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I. INTRODUCTION

The subject of internal wave generation by a body has been addressed
previously by Milesl, Carrier and Chenz, and Milder3. Fach of these
authors was concerned primarily with the far-field solutions. Miles used
the method of statinnary phase to obtain analytic expressions for the far-
field internal-wave disturbance in a fluid with a constant Vaisala frequency.
Carrier and Chen used similar cechniques to obtain a far-field solution in
which the Vaisala frequency is constant in a finite thickness layer, and zero
elsewhere. Milder soived the problem by numerically ‘nverting the Fourier

transform of the solution,

The formulation of the problera used is mathematically equivalent to
that of previous authors, except that different dependent variables are used
in such a manner that the flow is taken to consist of the sum of rotational
and vortical parts, This formulation elucidates both the physics and the
mathematics of the problem and suggests an obvious singular perturbation
expansion procedure leading to a set of both near-field and far-field equa-
tions, While the original equations are a coupled set of two elliptic partial
differential equations in three dimensions, the near-field expansion de -
couples the equations so that the dependent variables may be solved
sequentially rather than simultaneously. In addition, the density gradient
terms appear only in the inhomogeneous terms of the near-field equations,
allowing one to use simple superposition methods to generate near -ficld

solutions for arbitrary thermoclines, The far-field equations are also

1Miles, J. W,, "Internal Waves Generated by a Horizontally Moving Source, "
Gecphysical Fluid Dynamics, 2, 1971, pp. 63-87.

2Carrit‘:r, G.F., and A, Chen, "Internal Waves Produced by Underwater
Vehicles, " Report 182-6001-RO-00, TRW Systems, Redondo Beach, Calif.,
November 1971,

3Mllf.ler, M., "Internal Waves Radiated by a Moving Source, " Report 2702~
007, R&D Associates, Santa Monica, Calif., February 1974,




simplified - they are found to be elliptic in only two dimensions and wavelike
in the direction of freestream flow. The derivation of these equations is

given in Section II,

As indicated by the title, this report considers only the solutions to
the near-field equations, Analytic solutions to the near-field equations are
given in Section Il for the case of a constant Vaisala frequency in some
finite region, and zero elsewhere. The sclutions in Section III
include the potential flow, the first perturbation due to stratification (interval
wave), and the first perturbation due to the presence of a free surface

(gravity wave).

Ornie new result of this study is a breakdown in the vicinity of the body
of the usual slender body assuinption. This breakdown results in a singu-
larity behind the body which extends to infinity, Section IV discusses the
origin of this breakdown and outlines a technique for obtaining a set of equa-
tions which does not have an anomalous solution. The impact of the singu-

larity on the predicted surface disturbance is also discussed.

Section V presents, in graphical form, some typical surface currents

obtained from the lengthy equations derived in Section IiI.




II., PROBLEM FORMULATION

Consider the disturbance created by a slender body moving at constant
velocity Um in an inviscid stratified, infinitely deep fluid with negligible
surface tension, Eulerian coordinates fixed in the body will be used so the
flow is steady, The body will be represented by one source sink singularity
pair. This is largely a matter of algebraic convenience; the solution for
any body or wake which may be described by some distribution of singulari-
ties rnay be obtained from the source sink solution because of the linearity of

the problem.

The basic conservation equations are conservation of mass
v (PV) =0 (1)
and conservation of momentum

V.9)V+oplp +gi, =0 (2)

In addition, in incomyressible flow each fluid particle has a density which

remains constant as the particle travels along streamlines.
(V-w)p =0 (3)

The boundary condition at the free surface is constant pressure.

At this point, it is convenient to introduce the vorticity

w = VxV (4)

The equation governing the production of vorticity may be obtained by taking

the curl of the momentum Eq. (2) combined with Egs. (1) and (3)

)xwp = 0 (5)

|-

(V- 1o - (@ 9V + 9




The physical motivation for the introduction of the vorticity is as follows,
Near the body the flow field is approximately a potential flow. However,

the perturbed density field created by this potential flow interacts with the
pressure field associated with the thermocline through the last term in

Eq. () to generate vorticity. Once generated, this vorticity is convected
downstream by the flow field., Furthermore, Saffman4 has shown that a
concentrated vortex pair will oscillate in a stratified medium. In the present
case, it is assumed that the vorticity will remain distributed throughout the
tlow rather than rolling up into two concentrated sortices. However, each
pair of vortex filaments in the flow field should oscillate in a manner
qualitatively similar to the oscillation found v Saffman, and a sum of all
these oscillations acting together should provide a description of the internal

wave,

There are several small parameters which may be used to linearize
the preceding nonlinear equations. These small parameters will be intro-
duced into the equations vne at a time for clarity, In the so-called slender
body approximation, it is assumed that all perturbations of the flow variables
from their nominal values (at upstream infinity) are small. Thus, define
the following first order quantities as perturbations about the nominal

velocity Uoo' pressure po(z), and density po(z).

V = (U +u,v,w) (6)
P = py(2) +p, (7)
p = po(z) 2y (8)

4Sat't'man. P.G., "The Motion of a Vortex Pair in a Stratified Atmosphere, "
Studies in Applied Math, LI(2), June 1972, pp. 107-119.




Combining Eqs. (1) anc (3) and substituting in Eq. (6) gives one

u +v +w =0 (9)

The linearized versions of Eqgs. (2), (3) and (5) are

oV = _
i B ¥ ‘vpl/p0 t P8 lz/PO =0 (10)
ap dp
1 0 -
—= dp dp
dw 1 0= ) = _
‘otz | Wt el =0 s
0

and both vorticity production terms in Eq. (12) are the cross-product of a
vector in the z direction with a general three-dimensional vector, Thus, the
vorticity can have non-zero components in the x and y directions only. This
fact, together with the definition of the vorticity, Eq. (4), implies that the

x and y components of the velocity vector are derivable from a potential,

The z component of velocity consists of a linear combination of a potential

velocity and a rotational velocity, 2. Thus, Eq. (6) is replaced with
ViU td 8.8, +9) (13)

where €1 has two physical interpretztions, Besides being the vortical part of
the w velocity, it is also a vorticity function from which the two-dimensional
vorticity vector may be obtained by differentiation. (It is analogous to the

stream function in two-dimensional flow.) Therefore, the vorticity compo-

nents are g.ven by

; = (gnnc t_,) & (Qy' ‘Qxc 0) (14)




Substituting Egs. (13) and (14) into the y component of £q., (12) and
eliminating P and pl using Eqgs. (10) and (11) gives one

dln Po U2

olx Uoonx U00 dz ¢z + S g ¢xx (15)

Although various substitutions have been made, Eq. (15) has the same physi-
cal significance as Eq. (12). The left side of Eq. (15) is the convective
derivative [approximated via the slender body assumption as Uoo(a/bx)] of
the y component of vorticity. The right side of Eq. (15) is composed of the
vorticity production terms, The importance of the physical basis for this

equation will become apparent subsequently.

Following Milesl, it is convenient to introduce what could be termed

a Vaisala wave number k

dlnp
K2 = kP(z) = NoJUE = - £ 0 (16)
(0 0] U Z
(0 0]

where N is the Vaisala frequency.

A combination of Egs. (13) and (9) and of Eqgs. (15) and (16) gives the

basic set of equations considered herein.

¢ +¢yy+¢zz +nz = 0 (17)

XX

2 2
Q. Tk ($, +Q+ U ¢xx/g) =0 (18)
To these equations must be added the isobaric surface boundary condition.

Inspection of Eq. (5) shows this is equivalent to requiring the vorticity com-

ponents tangent to the free surface to be zero. In the context of the present

-10-




slender body approximation this means that Q is zero :.t the surface, Thus,

from Eq. (15) the surface boundary condition on ¢ is
¢ + UZ ¢ /g =0 (19)
z o "xx

This completes the derivation of the equations subject to the slender body
assumption, Although the equaticns are now linear, they are still difficult to
solve, and it is convenient to take advantage of the additional small para-
meters, Both the internal waves (characterized by kz) and the gravity waves
(characterized by U2 /g) are assumed to be small compared to the potential
flow associated w1th the body. (Alternatively, the Vaisala length squared,
l/k » is large compared to the body length squared, and U /g is small
compared to the depth of the body.,) Accordingly, the equatlons will be fur -
ther linearized in both these parameters. (If the terms involving Ui/g are
set to zero, then the preceding equations are equivalent to those considered
in Refs. 1, 2 and 3). Ir the near field [x < 0(1/k)] the potential may be split
into the following three terms, identified respectively with the body, i.e

internal wave, and the gravity wave,

2
U
- (0 0] 2 3 Lo
¢ = ¢0 + _g ¢G + ko ¢I + higher order terms (20)

where ko is a typical value of k(z).

The vorticity is first order and is associated only with the internal

wave,
2 .
€ = kg 2, + higher order terms (21)

Substitution of Egs. (20) and (21) into the basic set Egs. (17), (18) and (19)

gives

V2¢>0 = 0; b0- (surface) = 0 (22)

-11-




|
;
|
E

v ¢G = 0; ¢Gz = - ¢0xx(surface) (23)

{ 2 . - —
ey = - KK G 52 =0 =0, x~ - (24)

V' e = -Q ;¢ (surface) = 0 (25)
2 Iz

where the upstream boundary conditions on QI are such that the freestream

vorticity (internal wave) is zero.

Note that the linearization has decoupled the equations, and they may
be solved sequentially rather than requiring a simultaneous solution. The
internal wave and gravity wave problems are, of course, completely indepan-

dent to first order, and either one may be obtained without the other.

Far downstream of the body the zero order body potential will decay,
and only the first order vorticity (which is convected downstream) will
remain. Thus, the highest terms in both potential flow and vortical flow
will be O(kg); consequently, a different expansion is required far downstream
of the body. The far-field equations [x > 0(1/k)] are given here for com-
pleteness, even though only the near -field equations [x < 0(1/k)] are solved.
(It will be shown that the slender body linearization as given is also not
uniformly valid.) To obtain the outer expansion, it is necessary to rescale

X in the form

X = k x (20}
Thus, Fgs. (17) and (18) become, to first order

2 3
k0¢xx+¢ ¢ +Q =0 (27)

+
vy 2z z

2 —
Qyy * (k/ko) (¢, +9) = 0 (28)

-12-




In the far field, both the potential and the vorticity are first order

2
kg ) (29)

2
e k0 ®l (30)

Substitution of Eqs. (29) and (30) and linearization completes the specifica-

tion of the problem considered.

olyy * ¢lzz +®lz =0 #1)

2 -
® xx * (k/ko) wlz +®) =0 (32)

The initial conditions tor @, and ®l at X = 0 are obtained in the usual way

(see Van Dykes) as the limits of ¢I and Q

1 as X-—-00,

5Van Dyke, M., Perturbation Methods in Fluid Mechanics, Academic
Press, New York, 1964.




111, NEAR-FIELD SOLUTION

A, POTENTIAL FLOW SOLUTION

As stated previously, only a simple body represented by a source sink
pair will be considered. In addition, it is assumed that the fluid is infinitely
deep. These assumptions are not fundamental but are made primarily to

simplify the algebra.

The solution to Eq. (22), neglecting the boundary condition, for a

single source at the origin in an infinite medium is

S(x,y,z) = bt

(33)
an 192+ 25T

Thus the solution to Eqg. (22) (including the surface boundary condition) for a

source sink pair on the axis at x = £ in a fluid of depth d may be obtained by

the method of images
¢, = S(xtl,y,z) - 3(x-f,y,z) + S(x+f,y,z-2d) - S(x-[,y,z-2d) (34)

B. GRAVITY WAVE SOLUTION

A convenient way to solve Eq. (23)is to transform the problem into
one with cylindrical symmetry about the vertical axis. Thixz may be done by

defining a new dependent variable ¥ such that

g = ¥ (35)

XX

and by considering only a single source-image pair of the zero order poten-

tial. Thus, in place of Eq. (23), the following problem is considered:

(rd ) /r+¥, =04 (r,d) = 2S(x,y,d) (36)

Preceding page blank
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1

1/2
where 1 = (x2 +* yz) has been substituted to emphasize the cylindrical

symmetry >f the problem, Egquation (36) is now amenable to treatment with

Hankel transforms given by

(0 0]
¥R, z) = J/' r¥(r,z) J,(rR)dr (37)
0

with the following similar form for the inversion

(¢ 8]
U(r,z) =fR\II(R,z)J0(rR)dR (38)
0

The problem formulation in Fourier space may be obtained by combining
Egs. (36) and (37)

2 m -Rd =
- -R'¥ = 0; \IIZ(R,d) =Re® ; W(R-00) = 0 (36)
The solution of this equation is
v = 2 exp [-R(2d-2)] (40)
RZ

and the corresponding solution in physical space is

1/2
4= 32 |2d-z + [x% 4 y% + (2d-2)%] (41)

]

To obtain the solution to Eq. (23) associated with a single source -image pair,

differentiate Eq. (41) twice with respect to x.

1/2
2 2 2 2 2 2 2
-m a[y  +a"] + (x +y2+a) (y +ea -’E% (42)
2 (XZ +Y2 N 02)3/2 [a = (XZ +Y2 N aZ)II ]

G(x,y,a) =

where o has been substituted for 2d - z.

-16-




The complete solution to Eq. (23) for %0 given by a source sink pair

and on image pair above the surface is by superpositicn

g = G(x+l,y,2d-2) - G(x-£,y,2d-z2) (43)

T e g D —

C. INTERNAL WAVE SOLUTION (NEAR FIELD)

Since k is a function of z only, the general solution to Eq. (24) may be [ :
obtained in analytic form for an arbitrary thermocline., Carrying out the
z differentiation and the two x integrals ~n a potential which consists of a

source sink pair and an image pair gives one
QI x (k/ko)2 [W(x,y,2z) + W(x,y,z-2d)]; d s z < -0 (44)

where W is defined by

Winyo) = - —F2 o [ad s
4n(ly +2z7)

1/2 1/2

[(x+l)2 + y2 + zz] - [(x-[)2 + y2 + zz] l

(45)

The preceding expression is zero for x—-00 corresponding to the assumption
of zero vorticity or no internal wave upstream. As x--oo, the vorticity being
generated by the body potential goes to zero and Eq. (45) apprvaches a func-
tion of y and z only. It should be noted that if k(0) # 0, then the vorticity is

singular on the axis y=z=0 behind the body. This behavior arises fron. the
fact that the slender body linearization is not uniformly valid. This will be

discussed further in Section 1V,

{
The complete solution to Eq. (24) includes the vorticity generated by %
the body source sink pair plus the vorticity generated by the image sources,
If the body and the thermocline are well below the surface, the vorticity '
generated by the image sources will be negligible.

%

- —

— = e b - —— — e P — p————




Equation (44) gives the vorticity distribution beneath the free surface.
Note that .f the method of images is used to solve Eq. (25), the image vor-
ticity distribution above the free surface will be required to satisfy the free

surfauce boundary condition on ¢I.

e

The solution for ¢I 1s obtained using a method analogous to that used to
obtain ¢ First, define a new dependent variable X such that

X = ¢ (46)

Ixx
This definition combined with Eqs. (24) and (25) results in the following

equation for X
2y . B 2
X et [(k/ko) ¢0'z] (47)

This problem, like Eq. (3¢), is axisymmetric about the vertical axis if ¢0 -

consists only of sources placed along the z axis, Thus, Eq. (47) may also be

solved by Hankel transforms.

If the functional form of the thermocline represented here by k(z) is
simple, then analytic expressions for x can be obtained. In general, the
thermocline is quite comrulicated and some sort of numerical solution is
requ red. It is not suggested that Eq. (47) be transformed, solved numeri-
cally using a given k(z), and then inverted numerically, but rather that k(z)
be idealized as a piecewise constant function so that analytic solutions to
Eq. (47) may be obtained for each constant value of k. The total solution is
then obtained by either analytically or numerically summing up the solutions

due to each constant piece of k(z).

Accordingly, Eq. (47) will be solved for

¢0 = S(x,vy,z) (48)

-18-
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and

(49)

=
n

0; elsewhere

The solution for the body in the thermocline region (Ll £0sx LZ) 1s then X1

where
mL. z S{x,y.2L,-z)
X| = gy + 22 T -mSzsL
8n(x +y +z7)
(50)
- mzz \ G, v,.5) ] S(x,y,ZLl-z) ) S(x,y,ZLZ-z) ‘
1 8n(x2+y2+zz)3/2 2 4 4
<
L1 <z < L2 (51)
E
X = mLZZ + s(xter) P S(x'y'ZLl-Z) s L. f z <o
1 g 3e 4 4 PSR T

8n(x2+y2+z ) (52)

The solution to Egs. (47) through (49) for the single source in the

thermocline is given in Eqs. (50) through (52). The solution to the same set

of equations for the case in which the body is below the thermocline

(0 =L

1 £ LZ) is as follows:

S(x,y,ZLl-z) S(x,y,ZLZ-z)

v < 7 ;-o sz L) (53)
mz(z-L ) S(x,y,2L,-z)
12 A7 ' S(x,4y,Z) - 2 ;L sz23L, (54)
+z7)
m(LZ-Ll)z
X - e zz® (55)
2 81r(x2 +y2 + zZ )3/2 8

-19-




If a pair of solutions X, are superposed (corresponding to a source sink
pair) and the two x integrations are carried out, subject to the conditions

that all velocities are zero at x = -0, the result is

) ZfL z

8nx-'l(x,y,z,Ll,LZ i 1 l YZ +z2
=3 EESrERCs M= 2
y +z y +[ZL2-Z]
L.z ]2 1/2
Z 2
+ 21*2 (lx+L]Z ty + zz> = ([x-l] +y2+zz)
y +z2

z x+f sinh-l [ x +1 ]
2

(y2 +[ZLZ-z]Z)l,2

) sinh—l[ x+ £ J
(yZ +z2)172

b
)

sinh-l[ ) x- A 21/2] 5
(y" +[2L,-2]%) l

2 2172

(y +27)

_1[ x-A
sinh

([x+l]2 +y2 +zz)l/2 - ([x-l]z +y2 +zz>1/2

L
2

-+

([x+l]2 + yZ + [ZLZ-z]Z)I/Z

1/2
([x-[]z + yZ + [ZLZ-z]Z) ' ; ~0o<z s L (56)

1



" .
ilu
]
8«F. (x,v,2,L ,L,) 2 1/2 1/2
1 1° "2 2. .2, .2 2. 2.-2
= = Zz 2'([x+[] +y +z ) - ([x-[] +y +z )
y +z
) 2 2 2 2 2
20z / y +z y +z
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Note that Fl is the ¢I solution for a body in a {inite, constant thermocline

(k = constant) in an infinite medium,

That is, no free surface or, alternately,

no image sources have been included, 1
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A similar result for the body (source sink pair) below the constant

thermocline may be obtained by integrating Eqgs. (53) through (55).
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The complete solution to Eq. (25) (including the free surface boundary
condition) in terms of the functions defined previously for the body within a

finite thermocline is

¢I = Fl(x'y’z'Ll’LZ) 2 Fl(x,y,Zd-z, Ll' LZ) + Fz(x,y,z,Zd-Lz,Zd-Ll)
+ Fz(x,y,Zd-z,Zd-Lz,Zd-Ll); L1 =0 SL2 (62)
and the general solution for the body outside the thermocline is
4’1 = Fz(x,y,z,Ll,Lz) + Fz(x,y,Zd-z,Ll,Lz) + Fz(x,y,z,Zd-Lz,Zd-Ll)
+ Fz(x,y,Zd-z,Zd-Lz,Zd-Ll); 0 = L1 < L2 (63)

The last two terms in both Eqs. (62) and (63) may be negligible in most cases

of practical interest because of the sepa; a*ion of the the rmocline and the

sources,

If the thermocline is varicble with depth, a solutir - may be obtained by
approximating the thermocline as a pieccwise constant function and summing
(either analytically or numerically) relevant solutions of Eys., (62) and (63).
One advantage of this method is that the summation need only be carried out
for the specific variable of interest at the location of interest. For example,
if values of the surface current are required, expressions for the velocity
at the surface may be obtained by differentiating Eqs., (62) and (63) and
evaluating the result at z = d, The numerical quadrature (to take account of

the variable density) is then a two-dimensional quadrature to obtain a two -

dimensional result,
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IV, SINGULARITY BEHIND BODY

The near -field solution, obtained in Section III, was found to be singu-
lar on the axis behind the body. This section contains a brief discussion of
why the model predicts this physically impossible result, and a procedure is

suggested which could correct this deficiency in the model equations.

The source of tre singularity may be identified by considering the
physical significance of the vorticity Eq. (5). The first term in Eq. (5) 1s
the convective derivative of the vorticity, i.e., the rate of change of the
vorticity along streamlines in the flow. The second term is a vortex
stretching term which can change the magnitude of the vorticity by stretching
individual vortex filaments. The third term in Eq. (5) is a vorticity produc-
tion term associated with gradients in pressure and density, Now, consider
the effect on the vorticity equation of introducing the slender body assump-
tion. The x component of this vector equation is Eq. (15). The convective
derivative has become simply the partial derivative with respect to x, the
stretching term is higher order and has been dropped, and the production

term is given by the right-hand side of Eq. (15).

The cause of the singularity in vorticity on the axis behind the body is
now obvious. The vorticity on the streamline should be computed by inte-
grating along the y=z=0 axis upstream of the body, along a body streamline
passing over the body, and then along the axis behind the body (fo: an axi-
symmetric potential flow). However, in the present slender body model this
vorticity is computed by integrating along the axis right through the body.
Since in the present case the body is modeled by a source sink pair on the
axis, this integration passes through two singular points. Note that previous

studies which employ the slender body assurnptionl'z' 3 suffer from the samsn

deficiency.
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The singularity may, in principle, be removed from the solution of the
slender body equations by generating a separate expansion valid in the im-
mediate vicinity of the body. The major feature of this near -body expansion
is that the convective derivative of the vorticity may be directed along the
streamlines of the zero order potential flow which go around the body.
Although this step is simple in principle, the resultant equations are quite
complex and therefore have not been solved. In addition, it seems pointless
to carry out an expansion valid near the body for inviscid flow., In any real
fluid, there will also be a boundary layer growing on the body, in which
vorticity is diffused away from the wall, An investigation of the flow field

near the body which neglects the boundary layer appears to be academic,

A consideration of the boundary-layer flow is beyond the scope of the present
work,

The typical solutions presented in Section V show that for most practical
cases the effect of the singularity in the flow has a negligible effect on the
surface solution. Thus, it is concluded that unless there is a specific
interest in the flow field in the vicinity of the axis behind the body, the near
.ody expansion outlined in this section is an unnecessary refinement,
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V. TYPICAL NEAR-FIELD SURFACE VELOCITIES

This section presents, in graphical form, values of the velocity at the
surface for two cases: one in which the body is above the thermocline, and
one in which the body is within the thermocline. To simplify interpretation
and also to facilitate a comparison with published far -field resultsz, only
thermoclines which are constant and non-zero in a finite region will be dis-
cussed here. (However, it should be noted that non-constant thermoclines
may be treated casily by summing or integrating the solutions in Section III.
This summation is possible in the near field because the thermocline behavior

appears only in the inhomogeneous terms of the inner expansion. )

The relevant physical parameters for the two cases considered are
summarized in Table 1. Recall that the body is modeled by a source sink
pair and therefore the zero order body shape is a Rankine ovoid (provided the

free surface is neglected).

First consider the s irface velocity component parallel to the freestream
flow, generated by a body above the thermocline (Case 1 in Table 1). The
u component of velocity is found to be symmetric in both x and y (the direction
of freestream flow and the cross-track direction, respectively)., Trhis
symmetry applies to both the stratification and free surface perturbations as
well as to the zero order potential flow. The stratification contribution to
the u velocity goes to zero far downstream because the vorticity generating
this disturbance must line up with the freestream far from the body. Figure 1
shows the variation of u with x in the plane directly above the body. (Recall
that x=y=0 is directly above the center of the body.) The main contribution to
the velocity arises from the potential flow, with a significant correction
being made by the stratification contribution. The contribution generated by
relaxing the approximation that the free surface is a plane is negligible for a "- |
body at this depth. Figures 2, 3 and 4 are plots of u as a function of y at
those stations in Fig, 1 where uis nominally a maximum, zero and a mini-

mum, The free surface contribution is so small that it is not included in
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Table 1. Physical Parameters

Body Dimensions: Length = 300 ft
Diameter = 30 ft

Thermocline Characteristics: Top = 164 ft deep
Bottom = 492 ft deep
k = 0.002 ¢~

Velocity of Body: 5 ft/sec

Case 1. Body Above Thermocline: Body depth

Case 2. Body In Thermocline: Body depth
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figures subsequent to Fig, 2 showing the x and y velocity components, i

Figures 1 through 4 show that the maximum x component of surface current
occurs directly above the center of the body., The maximum negative values
are in the y=0 plane and occur about 100 ft fore and aft of the body stagnation

points,

Symmetry conditions require that the y component of velocity be iden-
tically zero at y=0; thus, Fig., 5 shows the surface cross-track velocity as
a function of x at y = 100 ft, This curve shows the expected behavior of zero
stratification contribution upstream, growing to some asymptotic value far
downstream., This is the expected manifestation of the trailing vorticity
which the stratification generates. Figures 6, 7 and 8 show the y velocity
component as a function of y at the same x stations behind the body used for
the x velocity plots. These figures all indicate that the peak disturbance is
about 100 ft from the y=0 plane; thus, Fig. 5 is roughly the peak value of

the cross-track velocity as a function of x.

The vertical surface velocity is shown in Figs. 9 and 10. The only
contribution to this velocity is the gravity wave contribution and, as pre-
viously noted, the magnitude is very small. For bodies closer to the sur -
face, a larger disturbance of the same general character would occur. The
peak disturbance occurs on the y=0 axis with a maximum (minimum) velocity

almost directly above the af* forward) stagnation point,

Now consider the case of the body in the thermocline. The stratifica-
tion is unchanged but the body is now 19 ft below the top of the thermocline
rather than 19 ft above it. Figures 11 and )2 show the x component of the
velocity in the y=0 ard x=0 planes, respectively. If these two figures are
compared wit! Figs, 1 and 2, the potential component of the velocity is found
to be reduced magnitude and spread out in both ithe x and y directions for
the deeper body. (This is a function of depth only since the zero order
potential is independent of stratification.) The stratification contribution to
the velocity has the same general behavior as the potential contribution; it is

also reduced in magnitude and spread out. Thus, there is no obvious
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anomalous behavior of the stratification generated velocity associated with
the fact that for this case the singularity behind the body is present. Since
the stratification contribution to u remains small and well -behaved, it is

concluded that the total velocity predictions in Figs. 11 and 12 are realistic

and accurate values.

Figures 13 and 14 are typical plots of the y component of surface
velocity for the body in the thermocline. A comparison of these curves with
Figs. 5 and 6 shows decreased velocities and spreading in the y direction,
Again, there are no obvious anomalies, and the similarity of the two sets of

curves lends credence to present predictions, However, for the y component

of the velocity, the total velocity is the stratification contribution far down-
stream. Thus, an error caused by the singularity is more important here.
To further study the effect of the singularity in the thermocline, the contri-
bution to the present surface current from the thermocline layer one body
diameter thick (30 ft) centered at the body was computed. The contribution
of this scratified layer to the velocities in Figs, 11 through 14 is slightly
less than ten percent of the given stratification contribution. This repre -
sents an upper bound on the possible error associated with the singularity,
The contribution of the singularity should properly be removed by cutting
out a circular regicn about the axis; the present calculation cut out the plane
region bounded by y = £15 ft, It is therefore concluded that Figs. 13 and 14
are valid predictions of the surface velocity, and any error associated with
the singularity is expected to be substantially less than ten percent of the

values shown.

Figure 15 is a semi-logarithmic plot of the curve illustrated in Fig. 14,
The log scale more clearly shows that v asymptotes to zero from negative
values. (Computations were made much farther out in y than are shown and

no further zeros were found.) The stratification contribution to u also has

zero crossings as a function of both x and y, although these are not discernible
on the scale of Figs, 11 and 12. One further point should be noted; the value of
v for the symmetric bodies considered here at x=0 is exactly half the asymp-
totic value as x yoo. Thus, Figs. 6, 14 and 15 can be interpreted as plots of

v/2 for x—w,
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VI. CONCLUSIONS

The near-field disturbance created by a slender body in a stratified
fluid has been investigated. This problem was made tractable by showing
that the governing equations admit a singular perturbation expansion with
one expansion valid near the body and one far downstream of the body. The
near -field equations resulting from this expansion are substantially simpler
than previously published equations and are solved analytically., The far-
field equations are also derived for completeness and are found to be simpler
than the more general set, Previous investigations of this problem have
assumed that the free surface is a plane; the perturbation equations which

result from relaxing this assumption are derived and solved analytically,

An immediate new result arising from the analytic solution is the
appearance of a singularity on the axis behind the body. The reasons for the
existence of the singularity and techniques for removing it are discussed.

It is ultimately concluded that the singularity has little impact on the pre -
dicted values of surface disturbance. However, a knowledge of the existence
of this singularity may be important when flows of this type are calculated
using numerical schemes, which cannot treat singularities without special

provisions,

Typical calculations have been made using the analytic solutions, and
these results are presented in graphical form. The disturbance at the sur-
face i8 broken down into three components: zero order potential flow,
stratification contribution, and gravity wave contribution. For the particular
cases considered, the dominant surface disturbance is generated by the zero
order potential flow, with significant corrections being made by the stratifi-
cation effect. For bodies at such depths as 150 ft the gravity wave effect is
completely negligible; thus, the usual assumption of a plane free surface is

justified,
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ACRONYMS AND SYMBOLS

depth of the body (or source) beneath the free surface
internal wave function defined by Eqs. (56) through (61)
gravitational acceleration

gravity wave function defined by Eq. (42)

unit vector

Bessel function

Vaisala wave number defined by Eq. (16)

one-half the separation of the source sink pair creating the
disturbance

bound of constant thermocline region

source-strength constant appearing in the fundamental solution
to Laplace's equation

pressure
radial co>rdinate measured from the z axis

coordinate in Fourier space

source solution to Laplace's equation defined in Eq. (33)
x component of perturbation velocity [Eq. (6)]
cross-track velocity component

vector velocity

vertical velocity component

internal wave solution function defined by Eq. (45)
coordinate parallel to the flow direction

rescaled x variable defined in Eq. (26)
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ACRONYMS AND SYMBOLS (Continued)

cross-track coordinate

vertical coordinate

symbolic vector differential operator

2z component of vorticity

y component of vorticity

resca’ed tar-field vorticity function defined in Eq. (30)

x component of vorticity

density

velocity potential defined in Eq. (13)

rescaled far-field velocity potential defined in Eq. (29)

dummy variable defined
dummy variable defined
Hankel transform of ¢

vector vorticity

vorticity function defined by Eq. (14)

perturbation associated with gravity wave

perturbation associated with internal wave

nominal value used as a

first order perturbation

solution with body outside thermocline

by Eq. (46)

by Eq. (35)

basis for perturbations; reference value

quantity; solution with body in thermocline

refers to freestream value
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